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Random Boolean networkssRBNsd are used in a number of applications, including cell differentiation,
immune response, evolution, gene regulatory networks, and neural networks. This paper addresses the problem
of computing attractors in RBNs. An RBN withn vertices has up to 2n states. Therefore, for largen, computing
attractors by full enumeration of states is not feasible. The state space can be reduced by removing irrelevant
vertices, which have no influence on the network’s dynamics. In this paper, we show that attractors of an RBN
can be computed compositionally from the attractors of the independent components of the subgraph induced
by the relevant vertices of the network. The presented approach reduces the complexity of the problem from
Os2nd to Os2ld, wherel is the number of relevant vertices in the largest component.
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I. INTRODUCTION

This paper studies compositional properties ofrandom
Boolean networkssRBNsd. An RBN is a synchronous Bool-
ean automaton withn vertices. Each vertex hask incoming
edges, selected at random, and an associated Boolean func-
tion. Functions are selected so that they evaluate to the val-
ues 0 and 1 with given probabilitiesp and 1−p, respectively.
The set of function’s values of vertices at a given time char-
acterizes the current state of a network.

RBNs were introduced by Kaufmannf1g in 1969 in the
context of gene expression and fitness landscapes. Later, they
were applied to the problems of cell differentiation, immune
response, evolution, and neural networksf2,3g. They have
attracted the interest of physicistsf4–6g due to their analogy
with the disordered systems studied in statistical mechanics,
such as the mean field spin glass.

The parametersk and p determine the dynamics of an
RBN. If a vertex controls many other vertices, and the num-
ber of controlled vertices grows in time, the RBN is said to
be in achaotic phase. Typically such a behavior occurs for
large values ofk,n. The next states of the RBN are random
with respect to the previous ones. The dynamics of the net-
work is very sensitive to changes in the state of a particular
vertex, associated Boolean function, or network connections.

If a vertex controls only a small number of other vertices
and their number remains constant in time, the RBN is said
to be in afrozen phase. Usually, independently on the initial
state, after a few steps, the network reaches a stable state.
This behavior usually occurs for small values ofk, such as
k=0 or 1.

There is a critical line between the frozen and the chaotic
phases, when the number of vertices controlled by a vertex
grows in time, but only up to a certain limit. Statistical fea-
tures of RBNs on the critical line are shown to match the
characteristics of real cells and organismsf1,7–10g. The
minimal disturbances create typically only slight variations
in the network’s dynamics. Only some rare perturbations
evoke radical changes.

For a given probabilityp, there is a critical number of
inputskc below which the network is in the frozen phase and
above which the network is in the chaotic phasef4,11g:

kc =
1

2ps1 − pd
.

For example, forp=0.5, the critical number of inputs iskc
=2.

Since the number of possible states of an RBN is finite,
any sequence of consecutive states of a network eventually
converges to either a single state, or a cycle of states, called
attractor. For large RBNs, computing attractors by full enu-
meration of states is an infeasible task. It is possible to re-
duce the state space of an RBN by removing vertices belong-
ing to itsstable core. The stable core is defined by Flyvbjerg
f12g as the set of vertices whose output value develops in
time to a constant value that is independent of the initial state
of the RBN. Bastola and Parisif13g have observed that the
state space can be further reduced by removing, e.g., vertices
which have no outputs. They introduced a notion onrelevant
vertex, which is a vertex which has an influence on an RBN’s
dynamics. Exact and approximate bounds on the size of the
set of relevant vertices for different values ofk and p have
been givenf12–16g. In the infinite size limitn→`, in the
frozen phase, the number of relevant vertices remains finite.
In the chaotic phase, the number of relevant vertices is pro-
portional ton. On the critical line, the number of relevant
vertices scales asn1/3 f17g. Bastola and Parisif18g have also
studied the structural properties the independent components
of the subgraph induced by the relevant vertices on an RBN.
In the infinite size limit, in the frozen phase, the components
are loops of effective connectivity 1. In the chaotic phase, the
number of components tends to 1. On the critical line, the
average number of components is of order of logn. Derrida
and Staufferf11g have considered the lattice version of
RBNs.

In this paper, we show that attractors of an RBN can be
computedcompositionallyfrom the attractors of the indepen-
dent components of the subgraph induced by the relevant
vertices. For an RBN withn vertices, the presented approach
reduces the complexity of the problem fromOs2nd to Os2ld,
wherel is the number of relevant vertices in the largest com-
ponent.
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The paper is organized as follows. Section II describes
basic notation and definitions. Section III gives the main re-
sult of the paper. Section IV concludes the paper and dis-
cusses open problems.

II. RANDOM BOOLEAN NETWORKS

A random Boolean network is a directed cyclic graphG
=sV,Ed, whereV is the set of vertices andE#V3V is the
set of edges connecting the vertices.

The setV hasn vertices. Each vertexvPV hask incom-
ing edges, selected at random. The set ofpredecessorsof v is
defined by

Pv = hu P Vusu,vd P Ej.

The set ofsuccessorsof v is defined by

Sv = hu P Vusv,ud P Ej.

Each vertexvPV has an associated Boolean function,fv,
of type h0,1jk→ h0,1j. The statesv of a vertexv at time t
+1 is determined by the states of its predecessorsui P Pv, i
P h1,… ,kj, as

svst + 1d = fv„sui
std,su2

std,…,suk
std….

The vectorS=(sv1
std ,sv2

std ,… ,svn
std) represents the state

of the network at timet. An example of an RBN with ten
vertices is shown in Fig. 1.

An infinite sequence of consecutive states of a network is
called a trajectory. A trajectory is uniquely defined by the
initial state. Since the number of possible states is finite, all
trajectories eventually converges to either a single state, or a
cycle of states, calledattractor. Thebasin of attractionof A
is the set of all trajectories leading to the attractorA. The
attractor length is the number of states in the attractor’s
cycle.

Next, we define irrelevant vertices.
Definition 1. A vertexvPV is irrelevant for an RBNG if

the network obtained fromG by removingv has the same
number and length of attractors.

There are several types of irrelevant vertices. First, all
verticesv whose associated functionfv is constant 0 or con-
stant 1 are irrelevant. Ifu is a successor of an irrelevant

vertexv and if after the substitution of the constant value of
fv in fu the functionfu reduces to a constant, thenu is irrel-
evant, too.

Second, all verticesv which have no successors are irrel-
evant. Ifu is a predecessor of an irrelevant vertexv and if all
successors ofu are irrelevant, thenu is irrelevant, too.

Third, a vertex can be irrelevant because its associated
function fv has a constant value due to the correlation of its
input variables. For example, if a vertexv with an associated
OR sANDd function has predecessorsu1 and u2 with func-
tions fu1

=sw and fu2
=sw8 , then the value offv is always 1

s0d. This kind of irrelevant vertices are hardest to identify.
Let Z be the set of all irrelevant vertices of an RBNG.
Definition 2. The reduced networkGuR=sVuR,EuRd is a

subgraph ofG defined byVuR=V−Z, and EuR=E−hsu,vd
PEuuPZ or vPZj.

In Ref. f18g, an algorithm for computing the set of all
irrelevant vertices has been presented. This algorithm is
computationally expensive and therefore is feasible for
RBNs with up to a thousand vertices only. Thedecimation
procedurepresented in Ref.f19g computes only a subset of
irrelevant vertices, but it is applicable to large networks. In
time linear in the size of an RBN, it finds irrelevant vertices
evident from the structure of the networksfirst and second
typed. The decimation procedure will not identify the irrel-
evant vertices whose associated functions have constant val-
ues due to the correlation of their input variablessthird typed.

The independent components ofGR are defined as fol-
lows.

Definition 3. Two relevant vertices are in the same com-
ponent if and only if there is an undirected path between
them.

A path is calledundirectedif it ignores the direction of
edges. For example, the network in Fig. 2 has two compo-
nents:hv2,v5,v9j and hv1,v7j.

Definition 3 is equivalent to the definition from Ref.f18g,
which says that “two relevant elements belong to the same
module if one of them controls the other one.”

Independent components can found inOsuVu+ uEud time,
whereuVu is the number of vertices anduEu is the number of
edges ofGR, using the algorithmf20g. To find a component
numberi, the function COMPONENTSEARCHsvd is called for a
vertex v which has not been assigned to a component yet.
COMPONENTSEARCH does nothing ifv has been assigned to a
component already. Otherwise, COMPONENTSEARCH assigns
v to the componenti and calls itself recursively for all pre-
decessors and successors ofv. The process repeats with the
counteri incremented until all vertices ofGR are assigned.

III. COMPUTING ATTRACTORS BY COMPOSITION

In this section, we show that it is possible to compute
attractors of a networkG compositionally from the attractors

FIG. 1. Example of an RBN. The state of a vertexvi at time t
+1 is given bysvi

st+1d= fvi
(sv j

std ,svk
std), wherev j andvk are the

predecessors ofvi, and fvi
is the Boolean function associated tovi

sshown by the Boolean expression insidevid.

FIG. 2. Reduced networkGR for the RBN in Fig. 1.
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of the connected components of the reduced networkGR.
Let GA be a connected component ofGR and AA be an

attractor ofGA. An attractorAA of lengthL is represented by
a sequence of stateskS0,S1,… ,SL−1l, whereSsi+1dmodL is the
next state of the stateSi, i P h0,1,… ,L−1j.

The support setof an attractorAA, supsAAd, is the set of
vertices ofGA. For example, the left-hand side connected
component in Fig. 2 has the support sethv2,v5,v9j.

Definition 4. Given two attractorsAA=kS0
A,S1

A,… ,SLA

A l
and AB=kS0

B,S1
B,… ,SLB

B l, such that supsAAdùsupsABd=x,
the composition ofAA andAB is a set of attractors defined by

AA + AB = ø
k=0

d−1

hAkj,

whered is the greatest common divisor ofLA andLB, each
attractorAk is of lengthm,m is the least common multiple of
LA and LB, and the ith state ofAk is a concatenation of
si mod LAdth state ofAA and fsi +kdmod LBgth state ofAB:

Si
k = Si mod LA

A Ssi+kdmod LB

B

for kP h0,1,… ,d−1j, i P h0,1,… ,m−1j and “mod” is the
operation division modulo.

As an example, consider two attractorsAA=kS0
A,S1

Al and
AB=kS0

B,S1
B,S2

Bl. We haved=1 andm=6, soAA+AB=hA0j,
where the statesSi

0, i P h0,1,… ,5j are defined by

S0
0 = S0

AS0
B, S3

0 = S1
AS0

B,

S1
0 = S1

AS1
B, S4

0 = S0
AS1

B,

S2
0 = S0

AS2
B, S5

0 = S1
AS2

B.

The composition of attractors is extended to the composi-
tion of sets of attractors as follows.

Definition 5. Given two sets of attractors
hA11,A12,… ,A1L1

j and hA21,A22,… ,A2L2
j, such that

supsA1idùsupsA2jd=x, for all i P h1,2,… ,L1j, j
P h1,2,… ,L2j, the composition of sets is defined by

hA11,A12,…,A1L1
j + hA21,A22,…,A2L2

j

= ø
∀si1,i2dPh1,…,L1j3h1,…,L2j

A1i1 + A2i2
,

where “3” is the Cartesian product.
Lemma 1. The compositionAA+AB consists of all possible

cyclic sequences of states which can be obtained fromAA
andAB.

Proof: By Definition 4, the result of the composition ofAA
and AB is d attractorshA0,A1,… ,Ad−1j of length m each,
whered is the greatest common divisor ofLA and LB is m
and the least common multiple ofLA andLB.

Consider any two states of the attractorAk, Si
k andS j

k, for
some i, j P h0,1,… ,m−1j, i Þ j , and somekP h0,1,… ,d
−1j. By Definition 4,

Si
k = Si mod LA

A Ssi+kdmod LB

B

and

S j
k = S j mod LA

A Ss j+kdmod LB

B .

We prove that

sSi mod LA

A = S j mod LA

A d ⇒ sSsi+kdmod LB

B Þ Ss j+kdmod LB

B d.

If Si mod LA

A =S j mod LB

B , then we can expressj as

j = i + XLA, s1d

whereX is some constant which satisfiesXLA,m.
By substituting j by Eq. s1d in the expressions j

+kdmod LB, we get

s j + kdmod LB = si + XLA + kdmod LB. s2d

Clearly, if XLA is not evenly divisible byLB, then the
right-hand side of the expressions2d is not equal tosi
+kdmod LB. On the other hand,XLA cannot be evenly divis-
ible by LB, becauseLAÞLB andXLA,m. Thus

si + XLA + kdmod LB Þ si + kdmod LB

and therefore the statesSs j+kdmod LB

B and Ssi+kdmod LB

B are dif-
ferent. Similarly, we can show that

sSsi+kdmod LB

B = Ss j+kdmod LB

B d ⇒ sSi mod LA

A Þ S j mod LA

A d.

Therefore, for a givenkP h0,1,… ,d−1j, no two states in
the attractorAk are equal.

Similarly to the above, we can show that no two states in
two different attractors can be the same. If the first parts of
two states are the same, than the second parts differ due to
the property

sk + XLAdmod LB Þ 0

for any kP h0,1,… ,d−1j.
There areLALB different pairs of indexes in the Cartesian

product h1,… ,LAj3 h1,… ,LBj. Thus, sinceLALB=md, at
leastd attractors of lengthm are necessary to represent all
possible combinations. Since no two states ofA0,A1,… ,Ad−1
are the same, exactlyd attractors of lengthm are sufficient to
represent all possible combinations. h

Let hG1,G2,… ,Gpj be the set of components ofGR.
Throughout the rest of the section, we useNi to denote the
number of attractors ofGi ,Aij to denotej th attractorGi, and
Lij to denote the length of Aij , i =h1,2,… ,pj, j
=h1,2,… ,Nij.

Let I = I13 I23…3 Ip be the Cartesian product of setsI i
=hi1, i2,… , iNi

j, wherep is the number of components ofGR.
The setI i represents indexes of attractors of the component
Gi. For example, if Ni =3, then Gi has three attractors:
Ai1,Ai2, and Ai3. The set I i is then I i =h1,2,3j. The
set I enumerates all possible elements of the setsI i. For
example, if p=2, N1=2, and N2=3, then I
=hs1,1d ,s1,2d ,s1,3d ,s2,1d ,s2,2d ,s2,3dj.

Theorem 1. The set of attractorsA of the reduced network
GR with p components can be computed as

A = ø
∀si1,…,ipdPI

fsA1i1
+ A2i2

d + hA3i3
jg ¯ + hApip

j.

Proof s1d The state space of any component is partitioned
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into basins of attraction. There are no common states be-
tween different basins of attraction. Thus different attractors
of the same component have no common states.

s2d Since in any pair of componentssGi ,Gjd, i , j
=h1,2,… ,pj, i Þ j , Gi andGj do not have vertices in com-
mon, the support sets of attractors ofGi andGj do not inter-
sect. Thus different attractors of different components have
no common states.

s3d The set I enumerates all possible combinators of
p-tuple of indexes of attractors of components. By definition
of the Cartesian product, everyp-tuple of I differ at least in
one position.

s4d From s1d, s2d, ands3d we can conclude that the set of
attractors obtained by the compositionfsA1i1

+A2i2
d

+ hA3i3
jg¯ + hApip

j for a givensi1,… , ipdP I, differs from the
set of attractors obtained for any otherp-tuple si18 ,… , ip8d
P I.

s5d From Lemma 1, we know that the compositionA1i1
+A2i2

represents all possible cyclic sequences of states which
can be obtained fromA1i1

andA2i2
. We can iteratively apply

Lemma 1 to the result ofA1i1
+A2i2

composed withA3i3
, etc.,

to show that the compositionfsA1i1
+A2i2

d + hA3i3
jg¯ + hApip

j
represents all possible attractors which can be obtained from
p attractorsAji 1

, j =h1,2,… ,pj.
s6d From s4d and s5d we can conclude that the union of

compositions over allp-tuples of I represents the attractors
of GR. h

The following results follow directly from the Theorem 1.
Lemma 2. The total number of attractors in the reduced

networkGR with p components is given by

N = o
∀si1,…,ipdPI

p
j=2

p

hfsL1i1
! L2i2

d ! L3i3
g¯ ! Lj−1i j−1

jLLji j

where “!” is the least common multiple operation and “L”
is the greatest common divisor operation.

Lemma 3. The maximum length of attractors in the re-
duced networkGR is given by

Lmax= max
∀si1,…,ipdPI

ssL1i1
! L2i2

d ! L3i3
d ¯ ! Lpip

,

where ”!” is the least common multiple operation.
By Definition 1, by removing irrelevant vertices we do

not change the total number and the maximum length of
attractors of an RBN. ThereforeN andLmax given by Lem-
mas 2 and 3 are the same for the original networkG.

Results similar to Lemma 2 and 3 have been presented by
Bastola and Parisi in Ref.f18g without a proof. It was cor-
rectly observed that the maximum attractor length equals to
the least common multiple of the maximum lengths of the
cycles that compose it. However, the total number of attrac-
tors was said to be equal to the maximum common divisor of
the maximum lengths of the cycles that compose it, which is
incorrect.

As an example, consider the network in Fig. 2 with two
components:G1=hv2,v5,v9j and G2=hv1,v7j. Their state

spaces are shown in Fig. 3. The first component has two
attractors: A11=k011,100l of length L11=2 and A12

=k000,001,101,111,110,010l of lengthL12=6. The second
component has one attractorA21=k00,10,11,01l of length
L21=4.

The Cartesian product ofI1=h1,2j and I2=h1j contains
two pairs: I =hs1,1d ,s2,1dj. For the pair s1,1d we have
L11LL21=2L4=2 andL11!L21=2!4=4. So,A11 and A21
compose into two attractors of length 4:

A11 + A21 = hk01100,10010,01111,10001l,

k01110,10011,01101,10000lj.

The order of vertices in the states isv2,v5,v9,v1,v7.
Similarly, for the pairs2, 1d we haveL12LL21=6L4=2

and L12!L21=6!4=12. So,A12 and A21 compose into two
attractors of length 12:

A12 + A21 = hk00000,00110,10111,11101,11000,01010,

00011,00101,10100,11110,11011,01001l,k00010,

00111,10101,11100,11010,01011,00001,00100,

10110,11111,11001,01000lj.

The total number of attractors isN=4. The maximum
attractor length isLmax=12.

IV. SUMMARY

In this paper, we show that attractors of an RBN can be
computed compositionally from the attractors of the indepen-
dent components of the subgraph induced by relevant verti-
ces of the network. Previously, for networks whose state
spaces were too large to examine exhaustively, the median
instead of the exact values of the number of attractors and
their length were measured. The presented compositional ap-
proach allows us to obtain exact results for larger networks.

In general, independent components occur in RBNs as a
result of network’s finite connectivity and because the Bool-
ean function assigned to a vertex may not depend on all its
inputs. Due to these two factors, some vertices do not control
any other vertex in the network. Such vertices serve as “bar-
riers” which prevent exchange of information among the
components. It would be interesting to find a relation be-
tween the components of an RBN and the biological systems

FIG. 3. sad State space of the componentG1=hv2,v5,v9j. There
are two attractors, A11=k011,100l and A12

=k000,001,101,111,110,010l. sbd State space of the component
G2=hv1,v7j. There is one attractor,A21=k00,10,11,01l.
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which RBNs are intended to model, e.g., gene regulatory
networks.

Future work includes deriving formulas for the average
number and size of the components, as well as the average

vertex-to-vertex distance. Another interesting possibility is to
apply redundancy removaltechniques used in logic synthesis
f21g to speed up the algorithm for finding irrelevant vertices
from Ref. f18g.
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